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Axial spondyloarthritis is a prevalent form of chronic arthritis which is related to psoriatic
arthritis and skin psoriasis. TNF and IL-17A as well as IL-17F are key cytokines
contributing to the pathobiology of this disease, as evidence by the therapeutic efficacy
of inhibition of these factors. Despite the evidence that IL-23 acts as an upstream driver of
Th17 cells, the T lymphocytes producing IL-17, and that IL-23 inhibition shows profound
efficacy in psoriasis, blocking IL-23 failed to show any evidence of clinical efficacy in axial
spondyloarthritis. In this viewpoint article, we revisit the reasons-to-believe in a role of IL-
23 in the pathobiology of axial spondyloarthritis, discuss what we have learned on the
pathobiology of this disease in general and on the function of the IL-23/IL-17 axis in
particular, and share a handful of lessons learned that are of relevance for the translation of
emerging biological insights into clinical therapeutics.
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INTRODUCTION

Axial spondyloarthritis (AxSpA) is a prevalent form of chronic arthritis affecting mainly the axial
skeleton (1). As other forms of spondyloarthritis, including psoriatic arthritis, it also often affects
peripheral joints. Both axial and peripheral disease is characterized by a combination of chronic
inflammation (including synovitis, enthesitis, and osteitis), focal bone destruction, and exaggerated
pathological new bone formation leading to joint ankylosis. Finally, a significant proportion of
patients also display extra-articular manifestations such as psoriasis, Crohn’s disease or colitis
ulcerosa, and acute anterior uveitis.

The pathobiology of AxSpA remains incompletely understood but a few concepts have been
firmly established. First, AxSpA does not display the prototypical features of classical autoimmune
diseases such as female predominance, genetic association withMHC class II variants and molecules
involved in T- or B-lymphocyte activation, presence of autoantibodies, and good clinal response to
T- or B-cell targeted therapies. It is therefore considered as a hyperinflammatory disorder driven by
an abnormal inflammatory (potentially innate immune) response to different forms of stress leading
to uncontrolled tissue inflammation and damage (2). Second, AxSpA is strongly associated with
HLA-B27 and overexpression of human HLA-B27 in rats leads to AxSpA-like disease (3). HLA-B27
could contribute to the pathobiology of the disease by antigen-presentation to cytotoxic T cells,
intracellular misfolding leading to endoplasmic reticulum stress and abnormal cytokine production
(including IL-23), and/or formation of heavy chain homodimers which can directly trigger NK and
T cells and possibly other cell types to produce cytokines such as IL-17 (4). Finally, pro-
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inflammatory cytokines such as TNF and IL-17 are critical
drivers of the chronic inflammation as demonstrated by
clinical efficacy of drugs blocking these cytokines. Within the
IL-17 family, several IL-17A blockers have proven impact on
chronic inflammation in AxSpA; preliminary evidence also
suggests that IL-17A blockade may be more effective than TNF
inhibition in halting pathological new bone formation (5, 6).
More recently, IL-17F has been proposed to contribute beyond
IL-17A in the pathobiology of both inflammation and new bone
formation in spondyloarthritis (7–9). Also, other cytokines
produced by so-called Th17 cells, including GM-SCF, have
been implicated in the pathobiology of SpA (10), raising the
question of the therapeutic value of targeting upstream activators
of Th17 cells rather than IL-17 itself.

This concept has been amply explored in contrived in vitro
and animal models, where IL-23 has been identified as a key
factor in the differentiation, activation, and pathogenicity of
Th17 cells (11). More importantly, drugs targeting either the
IL-23–specific p40 subunit or the p19 subunit which is shared
between IL-23 and IL-12 have shown impressive efficacy in skin
psoriasis (12). Head-to-head studies even demonstrated the
superiority of IL-23 inhibition over IL-17 inhibition in this
disease, in line with a “cascade model” where “upstream” IL-23
drives downstream effector cytokines including but not restricted
to IL-17A.
IL-23 INHIBITION IN AXIAL
SPONDYLOARTHRITIS: WHAT THE
CLINICAL TRIALS TAUGHT US

Considering the clinical and pathobiological link between
psoriasis and spondyloarthritis and the efficacy of IL-17
blockade in both conditions, a randomized, placebo-controlled
phase II clinical trial assessed the safety and efficacy of the anti-
p19 antibody risankizumab in ankylosing spondylitis, the
prototypical subform of AxSpA (13). Whereas no safety or
intolerance signals were identified, the study failed to show any
evidence for clinically significant improvement of the primary
and secondary endpoints. Several lines of evidence concord to
indicate that the unexpected outcome of this PoC trial is indeed
true. First, the patient population is comparable to the patient
populations included in other AS trials such as the anti-IL-17A
trials. Second, the design of the trial including the endpoints are
also well aligned with other AS trials. Third, the active drug,
risankizumab, has proven efficacy in psoriasis and its PK profile
was as expected. Fourth, primary, secondary, and exploratory
endpoints consistently indicated lack of efficacy, and there was
not even a trend toward a dose-response. Finally, a subsequent
study testing the anti-p40 drug ustekinumab, which has also
proven efficacy in psoriasis, also failed in ankylosing spondylitis
(14). Taken together, these data provide a wealth of human
pharmacological evidence that IL-23 may not be a relevant driver
of the pathobiology and clinical symptoms of active,
established AxSpA.
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IL-23 AND AXIAL SPONDYLOARTHRITIS:
REVISITING THE EVIDENCE

This unexpected clinical finding made us revisit the scientific
reason-to-believe in IL-23 blockade in AxSpA. Beyond the
previously mentioned understanding of the basic biology of the
IL-23/IL-17 axis and the similarities and overlap between
psoriasis and AxSpA, there were three main lines of evidence
that had been considered. First, genome-wide association studies
(GWAS) studies have clearly established that SNPs in the IL-23R
are a susceptibility factor for ankylosing spondylitis (15) and
several other genetic risk factors associated with ankylosing
spondylitis also point toward the IL-23/IL-17 axis. However,
the relative risk of these associations is moderate to low, several
variants of IL-23R are associated with different diseases
(including ankylosing spondylitis, psoriasis, Crohn’s disease
and ulcerative colitis), and the functional consequences of
these variants remain incompletely understood. Second, over-
expression of IL-23 in mice was reported to induce a
spondyloarthritis-like phenotype by acting on RORgamma+
CD3+ CD4− CD8− entheseal T cells (16). However, this
finding turned out to be hard to reproduce by other labs. On
the contrary, we had demonstrated previously that systemic IL-
23 exposure induced chronic arthritis, severe bone loss, and
myelopoiesis in the bone marrow and spleen, which resulted in
increased osteoclast differentiation and systemic bone loss (17), a
phenotype which is not compatible with AxSpA. Third, there was
indirect c l inical evidence which, unfortunate ly , i s
methodologically flawed. A pilot study reported profound
efficacy of the anti-p40 antibody ustekinumab in AS (18), but
the uncontrolled, open-label design is completely flawed in a
disease such as AS where the clinical outcomes are largely patient
and physician dependent. Similarly, studies with ustekinumab in
psoriatic arthritis reported a significant improvement in the
BASDAI, a well-validated patient-reported outcome used in
ankylosing spondylitis trials, and concluded that this drug was
also effective for the axial symptoms in this disease. However,
these studies ignored completely the fact that BASDAI, albeit
having been developed for AS, does not in any way capture
specifically axial disease and in fact is even a very good patient-
reported outcome for peripheral arthritis (19).

In brief, the supporting evidence to believe in a central role for
IL-23 in the pathobiology of AxSpA was, at best, circumstantial.
More specifically, there is a striking lack of functional data to
underpin if and how IL-23 contributes to the pathobiology of
AxSpA. Studies with targeted therapies across an array of
inflammatory conditions have indeed taught us that a single
pathway or even cytokine with well understood basic biology can
function in completely different way depending on the exact
contact and thereby can drive clearly distinct pathobiology (20).
In line with this, inhibition of IL-23 in collagen-induced arthritis
and SKG mice ameliorated experimental arthritis but did not
abolish pathology suggesting that other pathways remain active
(21, 22). Besides the IL-23/IL-17 axis, we have now also
demonstrated this for TNF: whereas the soluble form of TNF,
signaling exclusively through the TNF-R1, drives profound
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synovitis and bone destruction reminiscent of what we observe in
human RA, the transmembrane form of the same cytokine drives
osteoproliferative axial and peripheral joint inflammation as seen
in SpA (23). Similarly, mutations in specific molecules of the IL-1
pathway lead to quite distinct autoinflammatory syndromes such
as DIRA and CAPS, which affect other tissues and organs (24).
All these examples highlight the importance to understand not
only the basic biology of the cytokine pathway, but also to
decipher its exact function and relative contribution in a
particular disease context.
REVISITING THE PATHOBIOLOGY OF
AXSPA

What have we now learned on the functional role of IL-23 in
AxSpA? Two recent findings deserve further exploration in this
context. First, could it be that IL-23 contribute to the disease
initiation but becomes redundant in established disease? In other
words: could IL-23 contribute to derail an IL-17 response which,
once evolved to a state of chronic inflammation, persists even in
the absence of IL-23? This concept is supported by our findings
in the HLA-B27 transgenic rat model of SpA. The phenotype,
histology, and pathobiology of this model recapitulates faithfully
human SpA, is driven by the major genetic risk factor of human
AS (HLA-B27) and responds well to both TNF and IL-17
blockade (25). Targeting IL-23R in this model lacked any
efficacy in a therapeutic setting but did partially prevent
disease onset in a prophylactic setting (26). Albeit intriguing
from a scientific angle, this hypothesis may not be helpful from a
clinical angle as it is at present impossible to capture and
diagnose AxSpA patients in the early or even preclinical phase.

A second major insight is that IL-17 is not only produced by
canonical Th17 cells but also by a variety of innate lymphocytes
including MAT cells, gamma delta T cells, iNKT and ILC3 cells
(27, 28). Those cell populations have been suggested to be less
dependent on IL-23 for their IL-17 production: albeit IL-23 can
certainly drive IL-17 production in these cells, other cytokines
such as IL-1 and IL-18 are even more potent and IL-23 appears
to be redundant in the presence of these other cytokines (29).
This observation fits also with the fact that those innate immune
cells were recently shown to amplify myelopoiesis via GM-CSF
(30) and M-CSF signaling (31), which diversify the pathological
signals of IL-23, extend them to other pathways including IL-18,
and thereby render inhibition of IL-23 less effective in established
disease. There is little information on the potential role of IL-18
in AxSpA. In contrast, multiple studies have demonstrated the
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association of IL1 gene cluster polymorphisms with AS, in
particular polymorphisms in IL-1R2 (15) and IL-1A (32).
Small scale proof-of-concept clinical trials with anakinra, a
soluble IL-1 decoy receptor construct, yielded mixed results
(33, 34) but it remains to be determined to what extend this
relates to the biology, the therapeutic molecule, the trial design,
and/or the target population. Collectively, it is therefore plausible
that IL-23−independent pathways modulate the disease
outcomes observed in AxSpA patients.
LESSONS LEARNED

In conclusion, the genetic, experimental, functional, and clinical
studies on the role of IL-23 in ankylosing spondylitis have
yielded a number of important lessons with broader relevance.
First, the IL-23/IL-17 axis is not a linear “cascade.” Rather IL-23
and IL-17 display partially overlapping but also partially distinct
biology and pathobiology. Second, with the exception of
monogenic diseases with high penetrance and rare extreme
phenotypes, human genetic and expression studies are great
tools to create hypotheses but are not fit for purpose to proof
or disprove these. Third, animal models are still essential to help
us to understand the biology of a pathway but one should
remember that they are pathway models and, unfortunately,
only sporadically disease models. Fourth, the function of a
pathway and even a single inflammatory mediator is highly
context dependent. Therefore, the development and validation
of disease-relevant functional models is today one of the most
critical factors needed to secure a rapid and adequate
translational of emerging insights in basic immunology into
novel therapeutics.
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